11-4 Irrational Square Roots

Objective: To simplify radicals and to find decimal approximations of irrational square roots.

Vocabulary

Irrational numbers Real numbers that can't be expressed in the form $\frac{a}{b}$, where a and b are integers. Their exact values can't be expressed as either terminating or repeating decimals.

Property

Property of Completeness Every decimal represents a real number, and every real number can be represented by a decimal.

Example 1

Simplify:

a.
$$\sqrt{256}$$

b. $\sqrt{50}$

c.
$$2\sqrt{80}$$

d. $\sqrt{704}$

Solution

a.
$$\sqrt{256} = \sqrt{4 \cdot 64}$$

Factor within the radical sign.

$$= 2 \cdot 8$$

 $=\sqrt{4}\cdot\sqrt{64}$

Use the product property of square roots.

Simplify.

$$\mathbf{b.} \ \sqrt{50} = \sqrt{25 \cdot 2}$$
$$= \sqrt{25} \cdot \sqrt{2}$$

 $= 5\sqrt{2}$

$$c. 2\sqrt{80} = 2\sqrt{16 \cdot 5}$$

$$= 2 \cdot 4\sqrt{5}$$

 $= 8\sqrt{5}$

$$\mathbf{d.}\sqrt{704} = \sqrt{64 \cdot 11}$$

 $= 8\sqrt{11}$

Simplify.

1.
$$\sqrt{27}$$

2.
$$\sqrt{20}$$

3.
$$\sqrt{72}$$

4.
$$\sqrt{32}$$

5.
$$\sqrt{48}$$

6.
$$\sqrt{45}$$

7.
$$\sqrt{196}$$

8.
$$\sqrt{80}$$

9.
$$2\sqrt{63}$$

10.
$$4\sqrt{98}$$

11.
$$7\sqrt{28}$$

12.
$$4\sqrt{40}$$

13.
$$\sqrt{441}$$

14.
$$\sqrt{289}$$

15.
$$3\sqrt{50}$$

16.
$$12\sqrt{50}$$

17.
$$\sqrt{729}$$

18.
$$\sqrt{432}$$

19.
$$8\sqrt{75}$$

20.
$$2\sqrt{90}$$

21.
$$\sqrt{147}$$

22.
$$\sqrt{288}$$

23.
$$\sqrt{4225}$$

24.
$$5\sqrt{800}$$

25.
$$5\sqrt{1025}$$

11-4 Irrational Square Roots (continued)

Example 2

Approximate $\sqrt{396}$ to the nearest hundredth. Use your calculator or the table at the back of your textbook.

Solution

$$\sqrt{396} = \sqrt{2^2 \cdot 3^2 \cdot 11}$$
$$= \sqrt{2^2} \cdot \sqrt{3^2} \cdot \sqrt{11}$$
$$= 6\sqrt{11}$$

From the table:

$$\sqrt{11} \approx 3.317$$

$$6\sqrt{11} \approx 6(3.317) \approx 19.902$$

Therefore $\sqrt{396} \approx 19.90$.

Example 3

Approximate $\sqrt{0.6}$ to the nearest hundredth. Use your calculator or the table at the back of your textbook.

Solution

$$\sqrt{0.6} = \frac{\sqrt{60}}{\sqrt{100}} = \frac{\sqrt{60}}{10} \approx \frac{7.746}{10} = 0.7746$$

Therefore $\sqrt{0.6} \approx 0.77$.

In Exercises 26-37, use your calculator or the table at the back of the book. Approximate each square root to the nearest tenth.

26.
$$\sqrt{600}$$

27.
$$\sqrt{200}$$

28.
$$-\sqrt{800}$$

29.
$$-\sqrt{500}$$

30.
$$-\sqrt{2700}$$

31.
$$-\sqrt{2200}$$

32.
$$\pm \sqrt{6600}$$

33.
$$\pm \sqrt{4800}$$

Approximate each square root to the nearest hundredth.

34.
$$\sqrt{56}$$

35.
$$\sqrt{32}$$

36.
$$-\sqrt{0.7}$$

37.
$$-\sqrt{0.2}$$

Mixed Review Exercises

Find the indicated square roots.

1.
$$\sqrt{100}$$

2.
$$-\sqrt{144}$$

3.
$$\sqrt{\frac{9}{25}}$$

4.
$$-\sqrt{\frac{36}{121}}$$

5.
$$\sqrt{154^2}$$

6.
$$\sqrt{(\frac{2}{5})^2}$$

Simplify.

7.
$$(13x)^2$$

8.
$$(2y^3z^6)^2$$

9.
$$(x + 2y)^2$$

10.
$$[10(a + 1)]^2$$

11.
$$(9a^3b^7c)^2$$

12.
$$(4z^2 + 3y^3)(4z^2 - 3y^3)$$